Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 12: 784145, 2021.
Article in English | MEDLINE | ID: covidwho-1674332

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing and new variants of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, there is an urgent need for vaccines to protect individuals at high risk for complications and to potentially control disease outbreaks by herd immunity. Surveillance of rare safety issues related to these vaccines is progressing, since more granular data emerge about adverse events of SARS-CoV-2 vaccines during post-marketing surveillance. Varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivation has already been reported in COVID-19 patients. In addition, adverse events after SARS-CoV-2 mRNA vaccination have also been in the context of varicella zoster virus (VZV) reactivation and directly associated with the mRNA vaccine. We present the first case of CMV reactivation and pericarditis in temporal association with SARS-CoV-2 vaccination, particularly adenovirus-based DNA vector vaccine ChAdOx1 nCoV-19 against SARS-CoV-2. After initiation of antiviral therapy with oral valganciclovir, CMV viremia disappeared and clinical symptoms rapidly improved. Since huge vaccination programs are ongoing worldwide, post-marketing surveillance systems must be in place to assess vaccine safety that is important for the detection of any events. In the context of the hundreds of millions of individuals to be vaccinated against SARS-CoV-2, a potential causal association with CMV reactivation may result in a considerable number of cases with potentially severe complications.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , Cytomegalovirus/drug effects , Pericarditis/chemically induced , SARS-CoV-2/immunology , Virus Activation/drug effects , Aged , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Cytomegalovirus/physiology , Cytomegalovirus Infections/chemically induced , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Female , Humans , Pericarditis/drug therapy , Pericarditis/virology , Treatment Outcome , Valganciclovir/therapeutic use , Viremia/chemically induced , Viremia/drug therapy , Viremia/virology
2.
Int J Mol Sci ; 22(22)2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1524028

ABSTRACT

Aging is characterized by the dynamic remodeling of the immune system designated "immunosenescence," and is associated with altered hematopoiesis, thymic involution, and lifelong immune stimulation by multitudinous chronic stressors, including the cytomegalovirus (CMV). Such alterations may contribute to a lowered proportion of naïve T-cells and to reduced diversity of the T-cell repertoire. In the peripheral circulation, a shift occurs towards accumulations of T and B-cell populations with memory phenotypes, and to accumulation of putatively senescent and exhausted immune cells. The aging-related accumulations of functionally exhausted memory T lymphocytes, commonly secreting pro-inflammatory cytokines, together with mediators and factors of the innate immune system, are considered to contribute to the low-grade inflammation (inflammaging) often observed in elderly people. These senescent immune cells not only secrete inflammatory mediators, but are also able to negatively modulate their environments. In this review, we give a short summary of the ways that immunosenescence, inflammaging, and CMV infection may cause insufficient immune responses, contribute to the establishment of the hyperinflammatory syndrome and impact the severity of the coronavirus disease 2019 (COVID-19) in elderly people.


Subject(s)
COVID-19/pathology , Aging , B-Lymphocytes/pathology , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/pathology , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , Humans , SARS-CoV-2/isolation & purification , T-Lymphocytes/pathology
3.
Int J Antimicrob Agents ; 58(4): 106409, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330851

ABSTRACT

Since the start of the COVID-19 pandemic, there has been concern about the concomitant rise of antimicrobial resistance. While bacterial co-infections seem rare in COVID-19 patients admitted to hospital wards and intensive care units (ICUs), an increase in empirical antibiotic use has been described. In the ICU setting, where antibiotics are already abundantly-and often inappropriately-prescribed, the need for an ICU-specific antimicrobial stewardship programme is widely advocated. Apart from essentially warning against the use of antibacterial drugs for the treatment of a viral infection, other aspects of ICU antimicrobial stewardship need to be considered in view of the clinical course and characteristics of COVID-19. First, the distinction between infectious and non-infectious (inflammatory) causes of respiratory deterioration during an ICU stay is difficult, and the much-debated relevance of fungal and viral co-infections adds to the complexity of empirical antimicrobial prescribing. Biomarkers such as procalcitonin for the decision to start antibacterial therapy for ICU nosocomial infections seem to be more promising in COVID-19 than non-COVID-19 patients. In COVID-19 patients, cytomegalovirus reactivation is an important factor to consider when assessing patients infected with SARS-CoV-2 as it may have a role in modulating the patient immune response. The diagnosis of COVID-19-associated invasive aspergillosis is challenging because of the lack of sensitivity and specificity of the available tests. Furthermore, altered pharmacokinetic/pharmacodynamic properties need to be taken into account when prescribing antimicrobial therapy. Future research should now further explore the 'known unknowns', ideally with robust prospective study designs.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship/methods , COVID-19 Drug Treatment , Cross Infection/diagnosis , Anti-Bacterial Agents/pharmacokinetics , Antimicrobial Stewardship/organization & administration , Biomarkers/analysis , Coinfection/drug therapy , Coinfection/microbiology , Cross Infection/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Virus Activation/drug effects
4.
Viruses ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1289029

ABSTRACT

In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.


Subject(s)
Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , HIV Infections/virology , Vaccines/immunology , Animals , Anti-HIV Agents/therapeutic use , Clinical Trials as Topic , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Immunosenescence , Inflammation , Latent Infection/immunology , Latent Infection/virology , Mice , Vaccines/administration & dosage
5.
J Postgrad Med ; 67(2): 100-102, 2021.
Article in English | MEDLINE | ID: covidwho-1215549

ABSTRACT

Therapies used to tide over acute crisis of COVID-19 infection may lower the immunity, which can lead to secondary infection or a reactivation of latent infection. We report a 75-years-old male patient who had suffered from severe COVID-19 infection three weeks earlier and who had been treated with corticosteroids and convalescent plasma along with other supportive therapies. At time of discharge he had developed leukopenia which worsened at 1-week follow up visit. On 18th day post-discharge, he became very sick and was brought to our hospital with complaints of severe persistent dysphagia. During evaluation he was diagnosed to have an acute cytomegalovirus infection and severe oropharyngeal thrush. Both COVID-19 and cytomegalovirus are known to cause synergistic decrease in T cells and NK cells leading to immunosuppression. The patient made complete recovery with a course of intravenous ganciclovir and fluconazole. Persistent leukopenia in high risk and severely ill cases should give rise to a suspicion of COVID-19 and cytomegalovirus co-infection.


Subject(s)
COVID-19/virology , Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus , Leukopenia/virology , SARS-CoV-2 , Aged , Antiviral Agents/therapeutic use , COVID-19/therapy , Coinfection/therapy , Cytomegalovirus Infections/therapy , Humans , Immunization, Passive , Leukopenia/therapy , Male , COVID-19 Serotherapy
6.
Clin Immunol ; 227: 108727, 2021 06.
Article in English | MEDLINE | ID: covidwho-1193258

ABSTRACT

With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host Microbial Interactions/immunology , Killer Cells, Natural/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19/blood , Cytomegalovirus/immunology , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , HIV/immunology , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , Hepatitis B/blood , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B virus/immunology , Herpesvirus 4, Human/immunology , Humans , SARS-CoV-2/immunology , Toll-Like Receptors/metabolism
7.
Pan Afr Med J ; 36: 167, 2020.
Article in English | MEDLINE | ID: covidwho-743010

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been reported as the possible cause of acute myocarditis. Myocarditis is an inflammatory heart disease mostly caused by viral infections. Cytomegalovirus (CMV) primary infection is often not suspected as a cause of myocarditis in immune-competent adults. We report the case of a 37-year-old male admitted with fever, cough and dyspnea. Chest CT showed typical ground-glass changes indicative of viral pneumonia. He was tested negative for COVID-19 but had biological markers that made us still suspect it. He had elevated troponin I level (up to 111.5 ng/mL) and diffuse myocardial dyskinesia along with a decreased left ventricular ejection fraction (LVEF). He was diagnosed with CMV myocarditis with cardiac insufficiency and totally recovered without antiviral therapy. During the COVID-19 pandemic patients may develop myocarditis, still every myocarditis is not a COVID infection. Myocarditis linked to CMV infection may be rare, but life-threatening.


Subject(s)
Coronavirus Infections/diagnosis , Cytomegalovirus Infections/diagnosis , Myocarditis/diagnosis , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Cough/etiology , Cytomegalovirus Infections/virology , Diagnosis, Differential , Dyspnea/etiology , Fever/etiology , Humans , Male , Middle Aged , Myocarditis/diagnostic imaging , Myocarditis/virology , Pandemics , Pneumonia, Viral/epidemiology , Tomography, X-Ray Computed
8.
Rev Med Virol ; 30(5): e2144, 2020 09.
Article in English | MEDLINE | ID: covidwho-645890

ABSTRACT

The significantly higher mortality rates seen in the elderly compared with young children during the coronavirus disease 2019 (Covid-19) pandemic is likely to be driven in part by an impaired immune response in older individuals. Cytomegalovirus (CMV) seroprevalence approaches 80% in the elderly. CMV has been shown to accelerate immune ageing by affecting peripheral blood T cell phenotypes and increasing inflammatory mediated cytokines such as IL-6. The elderly with pre-existing but clinically silent CMV infection may therefore be particularly susceptible to severe Covid-19 disease and succumb to a cytokine storm which may have been promoted by CMV. Here, we evaluate the potential role of CMV in those with severe Covid-19 disease and consider how this relationship can be investigated in current research studies.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Cytokine Release Syndrome/epidemiology , Cytomegalovirus Infections/epidemiology , Cytomegalovirus/pathogenicity , Immunosenescence , Pandemics , Pneumonia, Viral/epidemiology , Age Factors , Aged , Betacoronavirus/immunology , COVID-19 , Child , Coinfection , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/immunology , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/mortality , Cytomegalovirus Infections/virology , Disease Progression , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , SARS-CoV-2 , Seroepidemiologic Studies , Severity of Illness Index , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL